853 research outputs found

    Ram-pressure stripped molecular gas in the Virgo spiral galaxy NGC 4522

    Full text link
    IRAM 30m 12CO(1-0) and 12CO(2-1) HERA observations are presented for the ram-pressure stripped Virgo spiral galaxy NGC 4522. The CO emission is detected in the galactic disk and the extraplanar gas. The extraplanar CO emission follows the morphology of the atomic gas closely but is less extended. The CO maxima do not appear to correspond to regions where there is peak massive star formation as probed by Halpha emission. The presence of molecular gas is a necessary but not sufficient condition for star formation. Compared to the disk gas, the molecular fraction of the extraplanar gas is 30% lower and the star formation efficiency of the extraplanar gas is about 3 times lower. The comparison with an existing dynamical model extended by a recipe for distinguishing between atomic and molecular gas shows that a significant part of the gas is stripped in the form of overdense arm-like structures. It is argued that the molecular fraction depends on the square root of the total large-scale density. Based on the combination of the CO/Halpha and an analytical model, the total gas density is estimated to be about 4 times lower than that of the galactic disk. Molecules and stars form within this dense gas according to the same laws as in the galactic disk, i.e. they mainly depend on the total large-scale gas density. Star formation proceeds where the local large-scale gas density is highest. Given the complex 3D morphology this does not correspond to the peaks in the surface density. In the absence of a confining gravitational potential, the stripped gas arms will most probably disperse; i.e. the density of the gas will decrease and star formation will cease.Comment: 11 pages, 15 figures, A&A accepted for publicatio

    Molecular hydrogen beyond the optical edge of an isolated spiral galaxy

    Full text link
    We know little about the outermost portions of galaxies because there is little light coming from them. We do know that in many cases atomic hydrogen (HI) extends well beyond the optical radius \cite{Casertano91}. In the centers of galaxies, however, molecular hydrogen (H2) usually dominates by a large factor, raising the question of whether H2 is abundant also in the outer regions but hitherto unseen.Here we report the detection of emission from carbon monoxide (CO), the most abundant tracer of H2, beyond the optical radius of the nearby galaxy NGC 4414. The molecular clouds probably formed in the regions of relatively high HI column density and in the absence of spiral density waves. The relative strength of the lines from the two lowest rotational levels indicates that both the temperature and density of the H2 are quite low compared to conditions closer to the center. The inferred surface density of the molecular material continues the monotonic decrease from the inner regions. We conclude that while molecular clouds can form in the outer region of this galaxy, there is little mass associated with them.Comment: 3 Nature page

    First Detection of CO in a Low Surface Brightness Galaxy

    Get PDF
    We report on the first attempts at searching for CO in red low surface brightness galaxies, and the first detection of molecular gas in a low surface brightness (mu_B(0)_{obs} > 23 mag arcsec^{-2}) galaxy. Using the IRAM 30m telescope, CO(1-0) and CO(2-1) lines were searched for in four galaxies -- P06-1, P05-5, C05-3, & C04-2. In three of the galaxies no CO was detected, to T_{MB} ~ 1.8mK (at the 3 sigma level). In the fourth galaxy, P06-1, both lines were detected. Comparing our findings with previous studies shows P06-1 to have a molecular-to-atomic mass ratio considerably lower than is predicted using theoretical models based on high surface brightness galaxy studies. This indicates the N(H_2)/(int{T(CO)dv}) conversion factor for low surface brightness galaxies may currently be consistently underestimated by a factor of 3 - 20.Comment: 8 pages, 2 figures, accepted by the ApJ

    Molecular Cloud Formation and the Star Formation Efficiency in M~33

    Full text link
    Does star formation proceed in the same way in large spirals such as the Milky Way and in smaller chemically younger galaxies? Earlier work suggests a more rapid transformation of H2_2 into stars in these objects but (1) a doubt remains about the validity of the H2_2 mass estimates and (2) there is currently no explanation for why star formation should be more efficient. M~33, a local group spiral with a mass 10\sim 10\% and a metallicity half that of the Galaxy, represents a first step towards the metal poor Dwarf Galaxies. We have searched for molecular clouds in the outer disk of M~33 and present here a set of detections of both 12^{12}CO and 13^{13}CO, including the only detections (for both lines) beyond the R25_{25} radius in a subsolar metallicity galaxy. The spatial resolution enables mass estimates for the clouds and thus a measure of the N(H2)/ICON({\rm H}_2) / I_{\rm CO} ratio, which in turn enables a more reliable calculation of the H2_2 mass. Our estimate for the outer disk of M~33 is $N({\rm H}_2) / I_{\rm CO(1-0)} \sim 5 \times 10^{20} \,{\rm cm^{-2}/(K{\rm \ km \ s^{-1}})}withanestimateduncertaintyofafactor with an estimated uncertainty of a factor \le 2.Whilethe. While the ^{12/13}COlineratiosdonotprovideareliablemeasureofCO line ratios do not provide a reliable measure of N({\rm H}_2) / I_{\rm CO},thevalueswefindareslightlygreaterthanGalacticandcorroborateasomewhathigher, the values we find are slightly greater than Galactic and corroborate a somewhat higher N({\rm H}_2) / I_{\rm CO}value.ComparingtheCOobservationswithothertracersoftheinterstellarmedium,noreliablemeansofpredictingwhereCOwouldbedetectedwasidentified.Inparticular,COdetectionswereoftennotdirectlyonlocalHIorFIRorH value. Comparing the CO observations with other tracers of the interstellar medium, no reliable means of predicting where CO would be detected was identified. In particular, CO detections were often not directly on local HI or FIR or H\alphapeaks,althoughgenerallyinregionswithFIRemissionandhighHIcolumndensity.TheresultspresentedhereprovidesupportforthequickertransformationofH peaks, although generally in regions with FIR emission and high HI column density. The results presented here provide support for the quicker transformation of H_2$ into stars in M~33 than in large local universe spirals.Comment: 9 pages 6 figures, Accepted in Astronomy and Astrophysics full resolution version available at www.obs.u-bordeaux1.fr/radio/JBraine/14166.pd

    The stellar mass to light ratio in the isolated spiral NGC 4414

    Get PDF
    We present high resolution CO(1-0) interferometric observations and deep HST B-V-I images of the flocculent isolated Sc type spiral NGC 4414. The goal is to determine the stellar mass-to-light (M/L) ratio in a galactic disk. The stars are seen without a dust screen, the central gas mass is very low (undetected), and we show that the dark matter is negligible in the central regions. We have developed an axisymmetric analytical gravitational potential model to account for the central light (mass) profile, the dynamics of the molecular gas in the highly obscured molecular ring, and the stellar light profile outside the highly obscured region. The contribution of dark matter is constrained by the extremely extended HI rotation curve and is small, possibly negligible, at distances less than 5 -- 7 kpc from the center. Furthermore, the M/L ratios we derive are low, about 1.5 in I band and 0.5 in K' band. The B and V band M/L ratios vary greatly due to absorption by dust, reaching 4 in the molecular ring and decreasing to about 1.6 -- 1.8 at larger radii. This unequivocally shows that models, like most maximum disk models, assuming constant M/L ratios in an optical waveband, simply are not appropriate. We illustrate this by making mock maximum disk models with a constant V band M/L ratio. The key is having the central light distribution unobscured such that it can be used to trace the mass. A primitive attempt to determine the intrinsic M/L ratio yields values close to unity in the B,V, and I bands and slightly below 0.5 in K'.Comment: 12 pages, 10 figures, accepted in A&

    The influence of the cluster environment on the star formation efficiency of 12 Virgo spiral galaxies

    Full text link
    The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies, possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk.Comment: 34 pages, 24 figures, accepted for publication by A&

    Molecular Gas in Tidal Dwarf Galaxies: On-going Galaxy Formation

    Full text link
    We investigate the process of galaxy formation as can be observed in the only currently forming galaxies -- the so-called Tidal Dwarf Galaxies, hereafter TDGs -- through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a {\it bona fide} galaxy. We have now detected CO in 9 TDGs with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108M10^8 M_\odot. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2_2. Although uncertainties are still large for individual objects as the geometry is unknown, we find that the "dynamical" masses of TDGs, estimated from the CO line widths, do not seem to be greater than the "visible" masses (HI + H2_2 + a stellar component), i.e., TDGs require no dark matter. We provide evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component.Comment: 8 pages 4 figures, to be published in: Proceedings of the IAU Symposium 217: Recycling Intergalactic and Interstellar Matte

    Galaxy Evolution and Star Formation Efficiency in the Last Half of the Universe

    Full text link
    We present the results of a CO(1-0) emission survey with the IRAM 30m of 30 galaxies at moderate redshift (z ~ 0.2-0.6) to explore galaxy evolution and in particular the star formation efficiency, in the redshift range filling the gap between local and very high-z objects. Our detection rate is about 50%. One of the bright objects was mapped at high resolution with the IRAM interferometer, and about 50% of the total emission found in the 27 arcsec (97 kpc) single dish beam is recovered by the interferometer, suggesting the presence of extended emission. The FIR-to-CO luminosity ratio is enhanced, following the increasing trend observed between local and high-z ultra-luminous starbursts.Comment: 6 pages, 5 figures, To appear in the proceedings of "SF2A-2007: Semaine de l'Astrophysique Francaise", (J. Bouvier, A. Chalabaev, and C. Charbonnel eds

    The Molecular Interstellar Medium of the Local Group Dwarf NGC6822

    Full text link
    Do molecular clouds collapse to form stars at the same rate in all environments? In large spiral galaxies, the rate of transformation of H2 into stars (hereafter SFE) varies little. However, the SFE in distant objects (z~1) is much higher than in the large spiral disks that dominate the local universe. Some small local group galaxies share at least some of the characteristics of intermediate-redshift objects, such as size or color. Recent work has suggested that the Star Formation Efficiency (SFE, defined as the SFRate per unit H2) in local Dwarf galaxies may be as high as in the distant objects. A fundamental difficulty in these studies is the independent measure of the H2 mass in metal-deficient environments. At 490 kpc, NGC6822 is an excellent choice for this study; it has been mapped in the CO(2-1) line using the multibeam receiver HERA on the 30 meter IRAM telescope, yielding the largest sample of giant molecular clouds (GMCs) in this galaxy. Despite the much lower metallicity, we find no clear difference in the properties of the GMCs in NGC 6822 and those in the Milky Way except lower CO luminosities for a given mass. Several independent methods indicate that the total H2 mass in NGC 6822 is about 5 x 10^6 Msun in the area we mapped and less than 10^7 Msun in the whole galaxy. This corresponds to a NH2/ICO ~ 4 x 10^{21} cm^-2 /(Kkm/s) over large scales, such as would be observed in distant objects, and half that in individual GMCs. No evidence was found for H2 without CO emission. Our simulations of the radiative transfer in clouds are entirely compatible with these NH2/ICO values. The SFE implied is a factor 5 - 10 higher than what is observed in large local universe spirals.Comment: 16 pages, 13 figures. Accepted for publication in Astronomy and Astrophysic
    corecore